Formal definition of Lie algebra

Lie algebra is a vector space $latex g$ with a map $latex [\cdot, \cdot]:g\times g \rightarrow g$ such that $latex [\cdot,\cdot]$ is bilinear $latex [x,x]=0 $ Jacobi inequality: $latex [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0,\forall x,y,z$. Note that 2) $latex \Rightarrow [x,y]=-[y,x]$ since $latex 0=[x+y,x+y]=[x,x]+[y,y]+[x,y]+[y,x]$. Note that the converse is true most of time as well since that implies $latex…

Lie algebra of sl(2)

  The “S” in stands for special, meaning that , then . . The condition obviously requires . It turns out that the converse is true as well and so as shown in the following. Let , , and . Then any matrix in can be represented by . By the linearity of . We…