Lie algebra of sl(2)

 

The “S” in SL(2,\mathbb{C}) stands for special, meaning that A \in SL(2,\mathbb{C}), then det(A)=1.

sl(2,\mathbb{C})=\left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}: \det\exp \left(t\begin{pmatrix}a&b\\c&d\end{pmatrix} \right)= 1,\forall t \right\}

\det\exp \left(t\begin{pmatrix}a&b\\c&d\end{pmatrix} \right)=\det \left(t\begin{pmatrix}1+ta&tb\\tc&1+td\end{pmatrix} + O(t^2) \right)

= 1+t(a+d)+O(t^2)=1, \forall t.

The condition obviously requires a+d=0. It turns out that the converse is true as well and so sl(2,\mathbb{C}) =\left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}: a+d=0\right\} as shown in the following.

Let H=\begin{pmatrix}1&0\\0&-1\end{pmatrix},
X=\begin{pmatrix}0&1\\0&0\end{pmatrix}, and
Y=\begin{pmatrix}0&0\\1&0\end{pmatrix}.

Then any matrix in \left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}: a+d=0\right\} can be represented by aH+bX+cY. By the linearity of sl(2,\mathbb{C}). We can show that aH+bX+cY\in sl(2,\mathbb{C}) and thus sl(2,\mathbb{C}) =\left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}: a+d=0\right\} as long as we can show

H,X,Y \in sl(2,\mathbb{C}).

Note that \forall t, \exp(t H) = \exp\begin{pmatrix}t& 0\\0&-t\end{pmatrix}=\begin{pmatrix}1+t+\cdots& 0\\0&1-t+\cdots\end{pmatrix}= \begin{pmatrix}e^t& 0\\0&e^{-t}\end{pmatrix}.

Thus, \det(\exp(tH))=e^t e^{-t}=1 \Rightarrow H\in sl(2,\mathbb{C})

and for X, \exp(t X)= \exp\begin{pmatrix}0& t\\0&0\end{pmatrix}=I+\begin{pmatrix}0& t\\0&0\end{pmatrix}+\frac{1}{2}\begin{pmatrix}0& t\\0&0\end{pmatrix}^2+\cdots=\begin{pmatrix}1& t\\0&1\end{pmatrix}

\therefore \det \exp(t X)= 1 \Rightarrow X \in sl(2,\mathbb(C)).

Similarly,  we can show Y \in sl(2,\mathbb{C})).

Finally, note that [H,X]=2X, [H,Y]=-2Y, and [X,Y]=H.

Leave a Reply

Your email address will not be published. Required fields are marked *